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Abstract
The accuracy of widely employed classical shell-theory-based formulae to calculate the
buckling strain of single- and double-walled carbon nanotubes is assessed here. It is noted that
some simplifications have been made in deriving these widely employed formulae. As a result
critical buckling strains calculated from these formulae are independent of aspect ratio
(length/diameter). However, molecular dynamics simulation results in the literature show an
aspect ratio dependence of buckling strain. Therefore, analytical expressions are derived in this
paper to calculate buckling strains of single- and double-walled carbon nanotubes based on
classical shell theory without simplifications. Applicability of these expressions is further
verified through molecular dynamics simulations based on the COMPASS force field. In
addition, improvement in results achieved through a refinement of classical shell theory is
assessed by calculating buckling strains based on first-order shell theory. Results show that
simplified formulae introduce a significant error at higher aspect ratios and smaller diameters.
The formulae derived here show reasonable agreement with the molecular dynamics results at
all aspect ratios and diameters. First-order shell theory is found to produce a slight
improvement in results for CNTs with smaller diameters and lower aspect ratios.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the last decade, there have been many studies that
were devoted to the mechanical characterization of carbon
nanotubes (CNTs). Experiments, quantum mechanics and
continuum mechanics were the major tools employed in these
studies. Due to the nanometer size, conducting experiments
on CNTs has become a difficult task and hence a limited
number of studies based on experiments can be found in
the literature. With the development of suitable force fields,
quantum mechanics has become an accurate tool for analyzing
CNTs. Moreover, the development in the field of computers
has make quantum mechanics a feasible option. However,
quantum mechanics still remains an expensive tool for CNTs
with a larger number of atoms such as multi-walled carbon
nanotubes (MWCNTs). Therefore, developing continuum
mechanics models to analyze CNTs is a primary interest of

researchers. However, the accuracy of the results provided by
continuum mechanics models is still questionable. Continuum
mechanics modeling of CNTs involve beam or shell models
associated with analytical or numerical techniques. In this
paper, we will concentrate only on analytical shell modeling
of CNTs.

Buckling of CNTs is one of the areas subjected to a
great deal of attention by researchers. Many studies can be
found based on atomistic simulations, continuum mechanics
modeling as well as a molecular structural mechanics
approach. However, there are many discrepancies among the
existing results. One such major discrepancy is that most of the
MDS-based studies (Li and Chou 2004, Liew et al 2004, Wang
et al 2005, Sears and Batra 2006, Zhang et al 2009) report
an aspect ratio dependence of buckling strain while hardly any
of the continuum-shell-model-based studies capture this point.
Most of the previous studies involving shell theory employed
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the formula given in equation (1) to calculate axial buckling
strain of single-walled carbon nanotubes (Yokobson et al 1996,
Xiao et al 2004):

εcr = 2
√

3(1 − ν2)

h

d
(1)

where εcr is the axial buckling strain, h is the thickness, d is
the diameter and ν is Poisson’s ratio.

This formula is for axisymmetric buckling of thin
cylindrical shells. However, it is evident from MDS results
that buckling of single-walled carbon nanotubes (SWCNT) is
mostly non-axisymmetric (Yokobson et al 1996, Cornwell and
Wille 1997, Buehler et al 2004, Wang et al 2005). Moreover,
this formula is clearly independent of aspect ratio.

Ru (2000a) employed a formula derived by Timoshenko
and Gere (1961) to calculate non-axisymmetric buckling strain
of simply supported SWCNTs. This formula is given in
equation (2):

Nx

Eh
= D

Ehα2
[α2 + β2]2 + 1

α2 R2

[
α2

α2 + β2

]2

. (2)

Based on similar derivations as for equation (2),
expressions given in equations (3) and (4) have been developed
by several researchers (He et al 2005a, Zhang et al 2006)
to calculate the buckling strain of double-walled carbon
nanotubes (DWCNTs):

N̂

Eh
=

[
�1

λ2
1

+ �2

λ2
2

] −
√[

�1

λ2
1

− �2

λ2
2

]2 + 4c12c21

2Ehα2
(3)

where

�1 = Dλ4
1 + c12λ

2
1 + Eh

R2
1

α4,

�2 = Dλ4
2 + c21λ

2
2 + Eh

R2
2

α4

λ1 = α2 + (β1)
2, λ2 = α2 + (β2)

2

α = mπ

L
, β1 = n

R1
, β2 = n

R2
.

(4)

Here, N̂ is the axial load per unit circumferential length,
E is the Young’s modulus, D is the bending stiffness, R1 and
R2 are the inner and outer tube radii, L is the length of tube, m
and n are the longitudinal and circumferential wavenumbers,
and c12 and c21 are the vdW coefficients of inner and outer
tubes.

It is noted that, in deriving these formulae given in
equations (2)–(4), several terms have been omitted assuming
that the ratio (longitudinal wavenumber/aspect ratio) is a
large value (Timoshenko and Gere 1961). As a result of
these simplifications, at larger aspect ratios these simplified
expressions lead to a significant error. Moreover, in contrast
to the MDS results, minimum buckling strain values calculated
from these formulae appear to be almost insensitive to the
aspect ratio of the tube. In order to assess the error introduced
by these simplifications, in this paper, analytical expressions

Table 1. Strain–displacement relations.

Strains Classical shell theory First-order shell theory
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− 2
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are derived for buckling strain based on classical shell theory
without simplifications. Moreover, analytical expressions
based on first-order shell theory are also derived here. First-
order shell theory accounts for shear deformation and hence
improvement of results can be expected for CNTs with smaller
diameters and lower aspect ratios in which shear deformation
is significant. Molecular dynamics simulations based on the
COMPASS force field are also conducted to verify the accuracy
of the derived expressions.

2. Axial buckling strain of SWCNTs based on shell
theories

The analytical expressions for buckling strain are derived in
this paper starting from the equilibrium equations, stress–strain
relations and strain–displacement relations. Stress resultants–
strain relations and strain–displacement relations employed in
this paper for two shell theories are given in tables 1 and 2,
respectively. Equilibrium equations for two shell theories
are given in equations (5)–(12). All these equations were
taken from Reddy (2004, 2007). x, θ and z represent the
axial, circumferential and thickness directions, respectively
(z positive in the outward direction). u, v and w are the
displacements in the x, θ and z directions while ϕx and ϕθ are
rotations of the transverse normal about the θ and x axes. ε0

i
denotes membrane strains while ε1

i denotes flexural strains.
For isotropic shells

Q11 = Q22 = E

(1 − v2)
, Q12 = νE

(1 − v2)
,

Q44 = Q55 = Q66 = E

2(1 + v)

(Ai j,Bi j,Di j,Ei j,Fi j,Hi j) =
∫ h/2

−h/2
Qi j (1, z, z2, z3, z4, z6) dz

for i, j = 1, 2, 4, 5, 6.

Equilibrium equations from classical shell theory are

∂ Nxx

∂x
+ 1

R

∂ Nxθ

∂θ
= 0 (5)
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∂ Nxθ

∂x
+ 1

R

∂ Nθθ

∂θ
+ 1

R

(
∂Mxθ

∂x
+ 1

R

∂Mθθ

∂θ

)
= 0 (6)

∂
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(
∂Mxx

∂x
+ 1

R

∂Mθ x

∂θ

)
+ 1

R

∂

∂θ

(
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+ 1

R
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)

− Nθθ

R
− N̂

∂2w

∂x2
+ p = 0. (7)

Equilibrium equations from first-order shell theory are

∂ Nxx

∂x
+ 1

R

∂ Nxθ

∂θ
= 0 (8)

∂ Nxθ

∂x
+ 1

R

∂ Nθθ

∂θ
+ Qθ

R
= 0 (9)

∂ Qx

∂x
+ 1

R

∂ Qθ

∂θ
− Nθθ

R
− N̂

∂2w

∂x2
+ p = 0 (10)

∂Mxx

∂x
+ 1

R

∂Mθ x

∂θ
− Qx = 0 (11)

∂Mxθ

∂x
+ 1

R

∂Mθθ

∂θ
− Qθ = 0. (12)

Here, N̂ is the axial compressive load per unit
circumferential length and p is the radial pressure.

In deriving buckling strain solutions, firstly the equilib-
rium equations based on each shell theory are rewritten in
terms of displacements by substituting strain–displacement and
stress resultants–strain relations into equilibrium equations.
Then, to solve the resulting equilibrium equations, the assumed
displacement field given in equation (13) is substituted into
the equilibrium equations. These assumed displacement func-
tions satisfy simply supported boundary conditions given by
v = 0; w = 0; ∂2w

∂x2 = 0; ϕθ = 0 at x = 0 and L:

u =
∞∑

m=1

∞∑

n=1

Umn cos αx sin nθ

v =
∞∑

m=1

∞∑

n=1

Vmn sin αx cos nθ

w =
∞∑

m=1

∞∑

n=1

Wmn sin αx sin nθ

φx =
∞∑

m=1

∞∑

n=1

Xmn cos αx sin nθ

φθ =
∞∑

m=1

∞∑

n=1

Ymn sin αx cos nθ

(13)

where α = mπ
L and β = n

R .
Here, m and 2n are the number of half-waves along the

length and circumference respectively.
The equilibrium equations after substitution by the

displacement field are given in equations (14)–(29). Here, i
represents the i th wall of a CNT and Ri represents the radius
of the i th wall.

From classical shell theory

Ci
11U i

mn + Ci
12V i

mn + Ci
13W i

mn = 0 (14)

Table 2. Stress resultants–strain relations.

Stress resultants Classical shell theory First-order shell theory

Nx A11ε
0
x + A12ε

0
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0
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0
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where

Ci
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2
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α
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2
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i
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3
i
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4
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2β2
i + A22

R2
i

.
(19)

From first-order shell theory
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11U i
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12V i
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13W i

mn = 0 (20)
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22V i
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23W i
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34 Xi

mn
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where
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2
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Fi
43 = Fi

34 Fi
44 = (D11α

2 + D66β
2
i + Ks A66)

Fi
45 = (D12 + D66)αβi

(28)

Fi
53 = Fi

35, Fi
54 = Fi

45

Fi
55 = (D66α

2 + D22β
2
i + Ks A66).

(29)

By solving the equilibrium equations, the expressions
given in equations (30)–(37) can be obtained for the buckling
strain of SWCNTs. Only the external axial compressive force
is considered here and hence the radial pressure p = 0 for
SWCNTs.

From classical shell theory

N̂

Eh
= 1

Ehα2
(C31Cuw + C32Cvw + C33) (30)

where

Cuw = C12C23 − C22C13

C11C22 − C12C21
and

Cvw = C21C13 − C11C23

C11C22 − C12C21

(31)

and Ckl = C1
kl is given in equations (17)–(19).

From first-order shell theory

N̂

Eh
= 1

Ehα2
×

[
P11 − P21 P12 P33 − P21 P13 P32 − P31 P12 P23 + P31 P13 P22

(P22 P33 − P23 P32)

]

(32)

where

P11 = (F31Suw + F32Svw + F33),

P12 = (F31Suy + F32Svy + F35), P13 = F34 (33)

P21 = F43, P22 = F44, P23 = F45 (34)

P31 = F52Svw + F53, P32 = F54,

P33 = F52Svy + F55 (35)

Suw = F12 F23 − F22 F13

F11 F22 − F12 F21
, Suy = F12 F25

F11 F22 − F12 F21
(36)

Svw = F21 F13 − F11 F23

F11 F22 − F12 F21
, Svy = −F11 F25

F11 F22 − F12 F21
(37)

Fkl = F1
kl is given in equations (25)–(29).

3. Axial buckling strain of DWCNTs based on shell
theories

In deriving the buckling strain for DWCNTs, van der Waals
(vdW) interactions should be taken into account. Several vdW
interaction models can be found in the literature (Ru 2000a,
2001, Wang et al 2003, He et al 2005a, 2005b). In this paper
the vdW model proposed by Ru (2000a, 2001) and Wang et al
(2003) is adopted. According to Ru (2000a, 2001) and Wang
et al (2003), vdW pressure at any point on a wall is linearly
proportional to the difference between radial deflections at that
point. Thus, radial pressure due to vdW interactions on the
outer and inner tubes can be given as shown in equations (38)
and (39).

Consider a double-walled carbon nanotube of outer radius
R1 and inner radius R2. Let wi be the generalized radial
displacements (z direction) and pi be the vdW pressure
associated with the i th tube (i = 1 and 2 refer to the outer
and inner walls, respectively). ci is the vdW coefficient of the
i th wall:

p1 = c1(w1 − w2) (38)

p2 = c2(w2 − w1). (39)

By considering the equilibrium of forces in the z direction:

c2 = c1
R1

R2
(40)

c1 = 320 ergs cm−2

0.16t2
= 320 × 10−7 Nm cm−2

0.16(0.142 nm)2

= 99.19 GPa nm−1. (41)

The same equilibrium equations (equations (14)–(29)) can
be applied for the two walls of DWCNTs separately where
pi is replaced by equations (38) and (39). It is clear that,
due to pi , the third equilibrium equations for inner and outer
walls are coupled. As in the case of SWCNTs, by solving the
equilibrium equations, the following buckling strain solutions
for DWCNTs based on classical and first-order theories can be
obtained.

From classical shell theory

N̂

Eh
= (H11 + H22) − √

(H11 − H22)2 + 4H12H21

2Ehα2
(42)

H11 = C1
31C1

uw + C1
32C1

vw + C1
33 + c1 H12 = −c1

H22 = C2
31C2

uw + C2
32C2

vw + C2
33 + c2 H21 = −c2

(43)
Ci

kl is given in equations (17)–(19).
Also

Ci
uw = Ci

12Ci
23 − Ci

22Ci
13

Ci
11Ci

22 − Ci
12Ci

21

, Ci
vw = Ci

21Ci
13 − Ci

11Ci
23

Ci
11Ci

22 − Ci
12Ci

21

.

(44)
From first-order shell theory

N̂

Eh
= (K11 + K22) − √

(K11 − K22)2 + 4K12 K21

2Ehα2
(45)

where
K11 = F1

31S1
uw + F1

32S1
vw + F1

33

+ [F1
31S1

uy + F1
32S1

vy + F1
35]P1

yw + F1
34 P1

xw + c

K22 = F2
31S2

uw + F2
32S2

vw + F2
33

+ [F2
31S2

uy + F2
32S2

vy + F2
35]P2

yw + F2
34 P2

xw + c
R1

R2

K12 = −c K21 = −c
R1

R2

(46)

Fi
kl is given in equations (25)–(29):

Si
uw = Fi

12 Fi
23 − Fi

22 Fi
13

Fi
11 Fi

22 − Fi
12 Fi

21

, Si
uy = Fi

12 Fi
25

Fi
11 Fi

22 − Fi
12 Fi

21

Si
vw = Fi

21 Fi
13 − Fi

11 Fi
23

Fi
11 Fi

22 − Fi
12 Fi

21

, Si
vy = −Fi

11 Fi
25

Fi
11 Fi

22 − Fi
12 Fi

21
(47)
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Pi
xw = Pi

1 Qi
22 − Pi

2 Qi
12

Qi
11 Qi

22 − Qi
12 Qi

21

, Pi
yw = Pi

2 Qi
11 − Pi

1 Qi
21

Qi
11 Qi

22 − Qi
12 Qi

21
(48)

Qi
11 = Fi

44, Qi
12 = Fi

45, Qi
21 = Fi

54,

Qi
22 = Fi

52Si
vy + Fi

55,
(49)

Pi
1 = −Fi

43, Pi
2 = −(Fi

52Si
vw + Fi

53). (50)

4. Axial buckling strain based on molecular
dynamics simulations

Molecular dynamic simulations (MDS) are conducted at 0 K
using the COMPASS force field. The COMPASS force field
(condensed-phase optimized molecular potentials for atomistic
simulation studies) has been proven as a better force field for
analyzing mechanical behavior of CNTs and has been used
by many researchers (Cao and Chen 2006a, 2006b, Chen and
Cao 2006, Wang et al 2007a, 2007b, 2008a, 2008b). This
force field accounts for the cross-term interacting energy and
nonbond energy as well while the other widely used force fields
such as the Tersoff–Brenner potential account only for valence
energy (bond energy). Moreover, parameters of the COMPASS
force field are obtained from the ab initio quantum mechanics
calculations while parameters of an empirical force field, such
as Tersoff–Brenner, are obtained from experiments. Moreover,
a Berendsen thermostat is employed with a displacement step
of 0.05A0, time step of 0.5 fs and a total of 10 000 time steps.

5. Results and discussion

In order to assess the accuracy of simplified formulae given
in equations (2) and (3), analytical expressions are derived
here based on classical shell theory without simplifications.
Moreover, expressions are derived based on first-order shell
theory to investigate the effect of refinement of classical shell
theory on the accuracy of buckling strain solutions. Molecular
dynamic simulations are also conducted to verify the accuracy
of these analytical expressions.

In these calculations, a wall thickness of 0.066 nm and
Young’s modulus of 5.5 TPa are used, as suggested by
Yokobson et al (1996). Shear modulus, axial stiffness and
bending stiffness are calculated based on their respective
classical formulae. The nterlayer spacing of DWCNTs is
considered as 0.34 nm.

5.1. Critical buckling strain of SWCNTs

Critical buckling strains calculated from the simplified formula
(equation (2)), formulae derived here based on classical
shell theory (equation (30)) and first-order shell theory
(equation (32)) and molecular dynamic simulation (MDS)
results for (8, 0) and (7, 7) SWCNTs with various aspect ratios
have been plotted in figure 1.

It can be seen from the figure that the simplified formula is
almost insensitive to aspect ratio, while the other two analytical
expressions are highly sensitive to aspect ratio. Agreeing with
the previous MDS-based work (Li and Chou 2004, Liew et al
2004, Wang et al 2005, Sears and Batra 2006, Zhang et al

Figure 1. Critical buckling strain versus aspect ratio for SWCNTs:
(a) 8, 0 and (b) 7, 7.

2009), the MDS results obtained in this study are also sensitive
to aspect ratio. Moreover, the critical buckling strain values
obtained by Yokobson et al (1996) and Zhang et al (2009) for
(7, 7) SWCNTs agree well with the value shown in figure 1(b)
for the same SWCNTs. Also, the critical buckling strain value
(0.073) obtained by Wang et al (2008a) for (8, 0) SWCNTs
with an aspect ratio 3.78 agrees well with the value shown
in figure 1(a) for the same SWCNTs. Thus, the MDS results
obtained in this study appear to be in good agreement with the
available MDS results in the literature.

Buckled shapes for (7, 7) SWCNTs with aspect ratios 2,
4, 6, 8 and 10 are shown in figure 2. All the tubes in this figure
show a shell buckling mode. Hence it is further convinced
that aspect ratio is an important parameter for buckling strains
of SWCNTs not only for beam buckling but also for shell
buckling.

Also, it is noteworthy that the error introduced by the
simplified formula is very significant for CNTs with higher
aspect ratios (table 3 and figure 1). Moreover, a marginal
improvement from the first-order shell theory can be seen
for CNTs at lower aspect ratio where the effect of shear
deformation is usually significant.

In figure 3, critical buckling strains of SWCNTs with
different diameters are shown for aspect ratios 2 and 10. It
is clear from the figure that, at aspect ratio 2, the simplified
formula, the formulae derived by the authors and the MDS
results show the same trend. The maximum percentage
difference between the simplified formula and the MDS results
shown in figure 3(a) is 46%. In contrast, at aspect ratio 10
results from the simplified formula deviate greatly from the
results of analytical expressions derived in this paper. It can
be seen from figure 3(b) that critical buckling strain values
calculated from the formulae derived here are less sensitive

5
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Figure 2. Buckled shapes for (7, 7) SWCNTs obtained from MDS.

Table 3. Error percentages correspond to the simplified formula and
formulae derived by the authors based on classical and first-order
shell theories.

Error % w.r.t MDS

SWCNT Aspect ratio Simplified Classical First-order

(8, 0) 2 −17 −2 2
4 −67 −37 −33
6 −83 9 9
8 −95 41 41

10 −173 45 45

(7, 7) 2 −29 −1 0
4 −72 −35 −34
6 −97 −46 −46
8 −123 1 1

10 −164 22 22

to diameter at aspect ratio 10 while those calculated from
the simplified formula are highly sensitive to diameter even
at aspect ratio 10. It is well understood that diameter plays
a significant role in shell buckling while aspect ratio plays a
significant role in beam buckling. Therefore, it is clear that, as
the aspect ratio increases, the effect from diameter should be
reduced while the effect from aspect ratio increases. Thus, the
formulae derived here give more meaningful results compared
to the simplified formula.

Interestingly, MDS results are also less sensitive to
diameter at this aspect ratio and are closer to the results
obtained from the formulae derived here. For example, the
maximum difference between buckling strain values produced
by the simplified formula and MDS is 263% while that between
the formulae derived here and MDS is 48%. Therefore, the
formulae derived here can be considered as a more accurate
solution for buckling strain. However, it should be noted that
the formulae derived here under-estimates the buckling strain
compared to MDS.

Figure 3. Variation of critical buckling strain with diameter (a) at
aspect ratio 2 and (b) at aspect ratio 10.

Figure 4. Variation of critical buckling strain of DWCNTs (4, 4)
(9, 9).

5.2. Critical buckling strains of DWCNTs

Figure 4 shows the critical buckling strains of (4, 4) (9, 9)
DWCNTs with different aspect ratios. Similar to the results
of SWCNTs, critical buckling strains of DWCNTs calculated
from the simplified formula given in equation (3) are not
sensitive to the aspect ratio while buckling strains calculated
from the formulae derived here based on classical shell theory
(equation (42)) and first-order shell theory (equation (45)) are
highly sensitive to aspect ratio. MDS results are also sensitive
to aspect ratio and closer to the values obtained from the
formulae derived here. Moreover, at lower aspect ratios, an
improvement of about 6% can be observed in results obtained

6
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Figure 5. Variation of critical buckling strain with outer diameter for
DWCNTs at aspect ratio 6.

from first-order shell theory compared with classical shell
theory.

Figure 5 shows the variation of critical buckling strain with
the diameter of the outer tube at aspect ratio 6. It is seen
from the figure that, similar to SWCNTs, buckling strain of
DWCNTs obtained from the formulae derived in this study
show less sensitivity to the diameter at higher aspect ratios.
MDS results seem to follow the same trend for outer diameter
up to 1.36 nm. However, beyond that diameter, a higher
reduction of buckling strain can be observed. Very few MDS-
based studies on DWCNTs can be found in the literature.
However, a buckling strain value (i.e. 0.06) obtained by Liew
et al (2004) for (5, 5) (10, 10) DWCNTs of aspect ratio 4.4 and
the value (0.05) obtained by Zhang et al (2007) for the same
DWCNTs of aspect ratio 5.5 agree well with the value (0.047)
obtained in the present study for the same DWCNTs with
aspect ratio 6. Therefore, accuracy of the authors’ MDS results
appears to be good. Thus, it is clear that for larger DWCNTs
even the non-simplified shell theory solution cannot provide
reasonable accuracy compared to MDS. However, even for
such diameters the non-simplified solutions are closer to MDS
results compared to the simplified solution.

6. Conclusion

It was noted that the widely employed classical-shell-
theory-based analytical expressions to calculate buckling
strains have been subjected to certain simplifications. As
a result, the aspect ratio dependence of critical buckling
strain could not be captured by these expressions. Thus
analytical expressions were derived based on classical shell
theory without simplifications to calculate buckling strain of
SWCNTs and DWCNTs. Moreover, analytical solutions for
buckling strain based on first-order shell theory are also derived
to improve the accuracy of the buckling strain solution by
taking the effect of shear deformation into account. Molecular
dynamic simulations are also conducted to further verify the
applicability of the expressions derived in this paper.

It is understood from the existing MDS results as well as
the MDS results obtained in this study that buckling strain of a
CNT is sensitive to aspect ratio even within the shell buckling
region. The expressions derived in this paper are also sensitive

to aspect ratio. However, as a result of simplifications made
in the derivation, the simplified formula is almost insensitive
to aspect ratio and hence leads to a significant error at higher
aspect ratios. Moreover, this error increases as the diameter
decreases. Therefore it is understood from the results that
the simplified formulae for axial buckling of thin cylindrical
shells which are widely applied to calculate the buckling strain
of both SWCNTs and DWCNTs are not applicable for all
CNTs. For CNTs with higher aspect ratio (approximately
greater than 4) and lower diameters the simplified formulae
lead to a significant error. The expressions derived here based
on classical theory but without simplifications produce closer
results to those produced by MDS and hence can be suggested
as a better continuum mechanics solution to the buckling strain
of SWCNTs and DWCNTs. Moreover, a marginal effect from
first-order shell theory can be observed in buckling strains of
CNTs with smaller diameters and lower aspect ratios.

References

Buehler M J, Kong Y and Gao H 2004 Deformation mechanisms of
very long single-walled carbon nanotubes subject to
compressive loading J. Eng. Mater. Technol. 126 245–9

Cao G and Chen X 2006a Mechanism of nanoindentation on single
walled carbon nanotubes; the effect of nanotube length J. Mater.
Res. 21 1048–70

Cao G and Chen X 2006b The effect of the displacement increment
on the axial compressive buckling behaviors of single-walled
carbon nanotubes Nanotechnology 17 3844–55

Chen X and Cao G 2006 A structural mechanics study of
single-walled carbon nanotubes generalized from atomistic
simulations Nanotechnology 17 1004–15

Cornwell C F and Wille L T 1997 Elastic properties of single-walled
carbon nanotubes in compression Solid State Commun.
101 555–8

He X Q, Kitipornchai S and Liew K M 2005a Buckling analysis of
MWCNT: a continuum model accounting for van der Walls
interaction J. Mech. Phys. Solids 53 303–26

He X Q, Kitipornchai S, Wang C M and Liew K M 2005b Modeling
of van der Waals force for infinitesimal deformation of
multi-walled carbon nanotubes treated as cylindrical shells Int.
J. Solids Struct. 42 6032–47

Li C and Chou T 2004 Modeling of elastic buckling of carbon
nanotubes by molecular structural mechanics approach Mech.
Mater. 36 1047–55

Liew K M, Wong C H, He X Q, Tan M J and Meguid S A 2004
Nanomechanics of single and multiwalled carbon nanotubes
Phys. Rev. B 69 115429

Reddy J N 2004 Mechanics of Laminated Composite Plates and
Shells Theory and Analysis 2nd edn (Boca Raton, FL: CRC
Press)

Reddy J N 2007 Theory and Analysis of Elastic Plates and Shells
2nd edn (Boca Raton, FL: CRC Press)

Ru C Q 2000a Effective bending stiffness of carbon nanotubes Phys.
Rev. B 62 9973–7

Ru C Q 2000b Effect of van der Waals forces on axial buckling of a
double-walled carbon nanotube J. Appl. Phys. 87 7227–31

Ru C Q 2001 Axially compressed buckling of a double-walled
carbon nanotube embedded in an elastic medium J. Mech. Phys.
Solids 49 1265–79

Sears A and Batra R C 2006 Buckling of multiwalled carbon
nanotubes under axial compression Phy. Rev. B 73 085410

Timoshenko S P and Gere J M 1961 Theory of Elastic Stability
(New York: McGraw-Hill)

7

http://dx.doi.org/10.1115/1.1751181
http://dx.doi.org/10.1557/jmr.2006.0128
http://dx.doi.org/10.1088/0957-4484/17/15/040
http://dx.doi.org/10.1088/0957-4484/17/4/027
http://dx.doi.org/10.1016/S0038-1098(96)00742-9
http://dx.doi.org/10.1016/j.jmps.2004.08.003
http://dx.doi.org/10.1016/j.mechmat.2003.08.009
http://dx.doi.org/10.1103/PhysRevB.69.115429
http://dx.doi.org/10.1103/PhysRevB.62.9973
http://dx.doi.org/10.1063/1.372973
http://dx.doi.org/10.1016/S0022-5096(00)00079-X
http://dx.doi.org/10.1103/PhysRevB.73.085410


J. Phys.: Condens. Matter 21 (2009) 435301 D D T K Kulathunga et al

Wang C Y, Ru C Q and Mioduchowski A 2003 Axially compressed
buckling of pressured multiwall carbon nanotubes Int. J. Solids
Struct. 40 3893–911

Wang Q, Duan W H, Liew K M and He X Q 2007a Inelastic buckling
of CNTs Appl. Phys. Lett. 90 033110

Wang Q, Duan W H, Richards N L and Liew K M 2007b Modeling
of fracture of carbon nanotubes with vacancy defect Phys. Rev.
B 75 201405

Wang Q, Liew K M and Duan W H 2008a Modeling of mechanical
instability of CNTs Carbon 46 285–90

Wang Q, Varadan V K, Xiang Y, Han Q K and Wen B C 2008b On
instability of single-walled carbon nanotubes with a vacancy
defect Int. J. Struct. Stab. Dyn. 8 357–66

Wang Y, Wang X, Ni X and Wu H 2005 Simulation of the elastic
response and the buckling modes of single-walled carbon
nanotubes Comput. Mater. Sci. 32 141–6

Xiao T, Xu X and Liao K 2004 Characterization of nonlinear
elasticity and elastic instability in single-walled carbon
nanotubes J. Appl. Phys. 95 8145–8

Yokobson B I, Brabec C J and Bernholc J 1996 Nanomechanics of
carbon tubes instabilities beyond linear response Phys. Rev.
Lett. 76 2511–4

Zhang Y Y, Tan V B C and Wang C M 2007 Effect of strain rate on
the buckling behavior of single- and double-walled carbon
nanotubes Carbon 45 514–23

Zhang Y Y, Wang C M, Duan W H, Xiang Y and Zong Z 2009
Assessment of continuum mechanics models in predicting
buckling strains of single-walled carbon nanotubes
Nanotechnology 20 395707

Zhang Y Y, Wang C M and Tan V B C 2006 Effect of omitting terms
involving tube radii difference in shell models on buckling
solutions of DWCNTs Comput. Mater. Sci. 37 578–81

8

http://dx.doi.org/10.1016/S0020-7683(03)00213-0
http://dx.doi.org/10.1063/1.2432235
http://dx.doi.org/10.1103/PhysRevB.75.201405
http://dx.doi.org/10.1016/j.carbon.2007.11.022
http://dx.doi.org/10.1142/S0219455408002697
http://dx.doi.org/10.1016/j.commatsci.2004.08.005
http://dx.doi.org/10.1063/1.1737805
http://dx.doi.org/10.1103/PhysRevLett.76.2511
http://dx.doi.org/10.1016/j.carbon.2006.10.020
http://dx.doi.org/10.1088/0957-4484/20/39/395707
http://dx.doi.org/10.1016/j.commatsci.2005.10.007

	1. Introduction
	2. Axial buckling strain of SWCNTs based on shell theories
	3. Axial buckling strain of DWCNTs based on shell theories
	4. Axial buckling strain based on molecular dynamics simulations
	5. Results and discussion
	5.1. Critical buckling strain of SWCNTs
	5.2. Critical buckling strains of DWCNTs

	6. Conclusion
	References

